» 화폐의 시간가치: 현재 그리고 미래가치

초기 데이터




지불방식



현금유동성 (C)

연간 금리 (r)
%

연간성장률 (g)
%

기간 (t)




결과


 

또는 :

 

현재가치 (PV)


\begin{align} PV_{Annuity\; Due}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\times(1+\frac{r}{n})\\ PV_{Ordinary\; Annuity}&=C \times \left[\frac{1-(1+\frac{r}{n})^{-t}}{\frac{r}{n}}\right]\\ PV&=\frac {C_{t}}{(1+\frac{r}{n})^{t}} \end{align}


미래가치 (FV)


\begin{align} FV_{Annuity\; Due}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\times (1+\frac{r}{n})\\ FV_{Ordinary\; Annuity}&=C \times \left[\frac{(1+\frac{r}{n})^{t}-1}{\frac{r}{n}}\right]\\ FV&=C_{0}\times (1+\frac{r}{n})^{t}\\ \end{align}